Click on the links for resources on each topic.

2013-J-2:

- Nuclear and Radiation Chemistry

2013-J-3:

- Filling Energy Levels in Atoms Larger than Hydrogen
- Periodic Table and the Periodic Trends

2013-J-4:

- Band Theory - MO in Solids

2013-J-5:

- Bonding in $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{CH}_{2} \mathrm{O}$

2013-J-6:

- Gas Laws

2013-J-7:

- Lewis Structures
- VSEPR

2013-J-8:

- Thermochemistry
- First and Second Law of Thermodynamics

2013-J-9:

- Thermochemistry
- Nitrogen Chemistry and Compounds
- Types of Intermolecular Forces

2013-J-10:

- Chemical Equilibrium

2013-J-11:

- Equilibrium and Thermochemistry in Industrial Processes

2013-J-12:

- First and Second Law of Thermodynamics

CONFIDENTIAL

FIRST SEMESTER EXAMINATION

JUNE 2013
TIME ALLOWED: THREE HOURS
GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY		SID	
NAME		NUMBER	
OTHER		TABLE	
NAMES		NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a \cdot.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 19 and 24 are for rough working only.

OFFICIAL USE ONLY
Multiple choice section

Short answer section

Page	Marks			Marker
	Max	Gained		
11	8			
12	6			
13	7			
14	4			
15	4			
16	9			
17	5			
18	5			
20	2			
21	4			
22	8			
23	8			
Total	70			
Check Total				

- Calculate the activity (in Bq) of a 1.00 g sample of ${ }^{137} \mathrm{Ce}^{131} \mathrm{I}$, if the half lives of the caesium and iodine are 30.17 years and 8.02 days respectively.

Both nuclides in ${ }^{137} \mathrm{Cs}{ }^{131} \mathrm{I}$ are beta emitters, and the daughter nuclides are stable. Describe the sample after it has been melted and allowed to resolidify after (a) 3 months and (b) 300 years.

- Write down the ground state electron configurations for the following species. Na is given as an example.

Na	$[\mathrm{Ne}] 3 s^{1}$
K	
As	
Sr	
C^{+}	

Name the elements described by the following configurations.
$[\mathrm{Kr}] 5 s^{2} 4 d^{6}$
$[\mathrm{Xe}] 6 s^{2} 5 d^{1} 4 f^{11}$

- The Periodic Table as arranged by Mendeleev allows us to make predictions about the
behaviours of elements based on those around them. Briefly describe why the Periodic Table works?

Carbon, silicon, germanium and tin all adopt the diamond structure. Diamond has a band gap of 5.5 eV , while silicon absorbs wavelengths shorter than 1100 nm . Predict

Predict the band gap of SiC , which also has a diamond like structure, but with Si bonded to 4 C atoms, and C bonded to 4 Si atoms.
\square
Use the information in the following table to predict the density of tin.

Element	Atomic Mass	Density $\left(\mathbf{g ~ c m}^{-3}\right)$	Bond length (pm)
Ge	72.64	5.323	244
Sn	118.7		280.

Answer:

- Oxygen exists in the troposphere as a diatomic molecule.

(a) Using arrows to indicate relative electron spin, fill the left-most valence orbital energy diagram for O_{2}, obeying Hund's Rule.
(b) Indicate on the right-most valence orbital energy diagram the lowest energy electronic configuration for O_{2} which has no unpaired electrons.

Suggest a heteronuclear diatomic species, isoelectronic with O_{2}, that might be expected to have similar spectroscopic behaviour.

The blue colour of liquid O_{2} arises from an electronic transition whereby one 635 nm photon excites two molecules to the state indicated by the configuration in (b) at the same time. What wavelength photon would be emitted by one molecule returning from this state to the ground state?

Answer:
THIS QUESTION CONTINUES ON THE NEXT PAGE.

The density of liquid oxygen is $1.141 \mathrm{~g} \mathrm{~cm}^{-3}$. Calculate its molarity and compare to the molarity of oxygen in air. Air consists of 21% oxygen.

\square
A 50.0 mL sample of liquid oxygen is transferred to an evacuated 1.25 L container and allowed to warm to room temperature $\left(25^{\circ} \mathrm{C}\right)$. What is the final pressure inside the container?

- Complete the following table on the given oxides of nitrogen. Indicate the charge on all atoms with non-zero formal charge.

Molecule	Lewis Structure	Shape of molecule
NO_{2}		
$\mathrm{~N}_{2} \mathrm{O}$		

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

- The atmosphere of Venus contains $96.5 \% \mathrm{CO}_{2}$ at 95 atm of pressure, leading to an average global surface temperature of $462^{\circ} \mathrm{C}$. The energy density of solar radiation

Marks 5 striking Venus is $2625 \mathrm{~J} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$. The radius of Venus is 6052 km , and the average albedo (the fraction of solar radiation reflected back into space) of its surface is 0.90 . Calculate the magnitude of the greenhouse effect on Venus.

The main absorption bands of CO_{2} lie in the energy range $600-750 \mathrm{~cm}^{-1}$. What range of wavelengths (in nm) corresponds to this energy range?

Sketch the emission spectrum of Venus on the axes below. Note the wavelength of maximum intensity, and point out any other important features.
(

- The structural formula of nitroglycerine, $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}$, is shown below.

Marks
5

The boiling point of nitroglycerine is $50^{\circ} \mathrm{C}$. What is the most important type of intermolecular force contributing to keeping nitroglycerine in the liquid state at room temperature, and which atoms in particular are involved?

Write a balanced equation for the explosive decomposition of liquid nitroglycerine. The products are water, carbon dioxide, nitrogen and oxygen.
\square
The standard enthalpy change associated with this explosive decomposition is $-1414 \mathrm{~kJ} \mathrm{~mol}^{-1}$. What other factor(s) would contribute to the free energy released in the decomposition of nitroglycerine?

Briefly describe a calorimetry experiment that could reliably measure the enthalpy of decomposition of nitroglycerine.

- The vapour pressure of mercury above its liquid at $25^{\circ} \mathrm{C}$ is 0.265 Pa . Calculate the free energy of formation (in $\mathrm{kJ} \mathrm{mol}^{-1}$) of gaseous mercury at $25^{\circ} \mathrm{C}$.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

- The principal chemical reaction in the Hall process, used to refine aluminium from its oxide, is:

$$
\mathrm{Al}_{2} \mathrm{O}_{3}(\text { in molten cryolite })+3 \mathrm{C}(\mathrm{~s}) \rightarrow 2 \mathrm{Al}(\mathrm{l})+3 \mathrm{CO}(\mathrm{~g})
$$

The free energy change for this reaction is $\Delta G^{\circ}=594 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $1000^{\circ} \mathrm{C}$.
Recycling aluminium essentially only requires enough energy to melt it. The melting point of aluminium is $660^{\circ} \mathrm{C}$, its heat of fusion is $10.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and its heat capacity is $0.900 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$. Calculate the percentage of energy saved by recycling aluminium $v s$. refining it from $\mathrm{Al}_{2} \mathrm{O}_{3}$. (Assume that the ambient temperature is $25^{\circ} \mathrm{C}$.)

- Differential scanning calorimetry (DSC) is an experimental technique that measures the temperature of a sample as a function of the heat supplied to it. Negative or positive peaks on a DSC curve therefore indicate endothermic or exothermic processes respectively. The figure below shows a series of DSC curves collected for methane at different pressures. The scales of all the heat flow curves are the same, but they have been offset from zero for clarity. Clearly identify the type of phase change associated with every peak in the DSC curve.

Use the DSC data shown to sketch a pressure-temperature phase diagram on the graph below (note that pressure is on a log scale). Label all the important regions of the phase diagram.

- Consider the following aqueous voltaic cell at $25^{\circ} \mathrm{C}$:

$$
\mathrm{Pb}(\mathrm{~s})\left|\mathrm{Pb}^{2+}(0.0010 \mathrm{M}) \| \mathrm{Sn}^{2+}(2.0 \mathrm{M})\right| \mathrm{Sn}(\mathrm{~s})
$$

Write balanced equations for the reactions occurring at the anode, cathode and overall.
anode: \square
Calculate the potential of the cell under the stated conditions.
\square
What will be the concentrations of $\mathrm{Pb}^{2+}(\mathrm{aq})$ and $\mathrm{Sn}^{2+}(\mathrm{aq})$ in the cell when it comes to equilibrium?

而	
$\left[\mathrm{Pb}^{2+}(\mathrm{aq})\right]=$	$\left[\mathrm{Sn}^{2+}(\mathrm{aq})\right]=$

CHEM1901 - CHEMISTRY 1A (ADVANCED)

CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

DATA SHEET

Physical constants
Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rydberg constant, $E_{\mathrm{R}}=2.18 \times 10^{-18} \mathrm{~J}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Permittivity of a vacuum, $\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Charge of electron, $e=1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, $m_{\mathrm{e}}=9.1094 \times 10^{-31} \mathrm{~kg}$
Mass of proton, $m_{\mathrm{p}}=1.6726 \times 10^{-27} \mathrm{~kg}$
Mass of neutron, $m_{\mathrm{n}}=1.6749 \times 10^{-27} \mathrm{~kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and $25{ }^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0{ }^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa}=1.013 \mathrm{bar}$
$1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq}$
$0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$
$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$
$1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$
1 tonne $=10^{3} \mathrm{~kg}$
$1 \AA=10^{-10} \mathrm{~m}$
$1 \mathrm{~W}=1 \mathrm{~J} \mathrm{~s}^{-1}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples

Multiple Prefix Symbol
10^{3} kilo k
10^{6} mega M
10^{9} giga G
10^{12} tera T

CHEM1901-CHEMISTRY 1A (ADVANCED)

CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Standard Reduction Potentials, E°

Reaction
$\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq})$
$\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s})$
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$
$\mathrm{O}_{2}+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Pt}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \operatorname{Pt}(\mathrm{s})$
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{3+}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \operatorname{Pd}(\mathrm{s})$
$\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})+10 \mathrm{H}^{+}(\mathrm{aq})+8 \mathrm{e}^{-} \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}$
$\operatorname{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \operatorname{Ag}(\mathrm{s})$
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$
$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$
$\mathrm{BiO}^{+}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Bi}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})$
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s})$
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$
$\mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Co}(\mathrm{s})$
$\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{s})$
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$
$\mathrm{Sc}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Sc}(\mathrm{s})$
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \operatorname{Mg}(\mathrm{s})$
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s})$
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{s})$
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s})$
E° / V
$+1.82$
$+1.72$
$+1.51$
$+1.50$
$+1.36$
$+1.23$
$+1.18$
$+0.96$
$+0.96$
$+0.92$
$+0.88$
$+0.80$
$+0.77$
$+0.53$
$+0.34$
$+0.32$
$+0.15$
0 (by definition)
-0.04
-0.126
-0.136
-0.24
-0.28
-0.40
-0.44
-0.74
-0.76
-0.83
-0.89
-1.68
-2.09
-2.36
-2.71
-3.04

CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Useful formulas

Quantum Chemistry	Electrochemistry
$E=h \nu=h c / \lambda$	$\Delta G^{\circ}=-n F E^{\circ}$
$\lambda=h / m v$	$\text { Moles of } e^{-}=I t / F$
$E=-Z^{2} E_{\mathrm{R}}\left(1 / n^{2}\right)$	$E=E^{\circ}-(R T / n F) \times \ln Q$
$\Delta x \cdot \Delta(m v) \geq h / 4 \pi$	$E^{\circ}=(R T / n F) \times \ln K$
$\begin{aligned} & q=4 \pi r^{2} \times 5.67 \times 10^{-8} \times T^{4} \\ & T \lambda=2.898 \times 10^{6} \mathrm{~K} \mathrm{~nm} \end{aligned}$	$E=E^{\circ}-\frac{0.0592}{n} \log Q\left(\text { at } 25^{\circ} \mathrm{C}\right)$
Acids and Bases	Gas Laws
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$	$P V=n R T$
$\mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00$	$\left(P+n^{2} a / V^{2}\right)(V-n b)=n R T$
$\mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00$	$E_{\mathrm{k}}=1 / 2 m v^{2}$
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\}$	
Radioactivity	Kinetics
$t_{1 / 2}=\ln 2 / \lambda$	$t_{1 / 2}=\ln 2 / k$
$A=\lambda N$	$k=A \mathrm{e}^{-E a / R T}$
$\ln \left(N_{0} / N_{\mathrm{t}}\right)=\lambda t$	$\ln [\mathrm{A}]=\ln [\mathrm{A}]_{0}-k t$
${ }^{14} \mathrm{C}$ age $=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right)$ years	$\ln \frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$
Colligative Properties \& Solutions	Thermodynamics \& Equilibrium
$\Pi=\mathrm{cRT}$	$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$
$P_{\text {solution }}=X_{\text {solvent }} \times P^{\circ}{ }_{\text {solvent }}$	$\Delta G=\Delta G^{\circ}+R T \ln Q$
$\mathrm{c}=k \mathrm{p}$	$\Delta G^{\circ}=-R T \ln K$
$\Delta T_{\mathrm{f}}=K_{\mathrm{f}} m$	$\Delta_{\text {univ }} S^{\circ}=R \ln K$
$\Delta T_{\mathrm{b}}=K_{\mathrm{b}} m$	$K_{\mathrm{p}}=K_{\mathrm{c}}\left(\frac{R T}{100}\right)^{\Delta n}$
Miscellaneous	Mathematics
$A=-\log \frac{I}{I_{0}}$	If $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$A=\varepsilon c l$	$\ln x=2.303 \log x$
$E=-A \xlongequal{e^{2}} N_{\mathrm{A}}$	$\text { Area of circle }=\pi r^{2}$
${\overline{4 \pi \varepsilon_{0} r}}^{N}$	Surface area of sphere $=4 \pi r^{2}$

				$\begin{gathered} {[1 ' z \varsigma z]} \\ \text { SG } \\ \text { wannussua } \\ 66 \end{gathered}$		$\left[1 _\llcorner\llcorner Z]\right.$ Yタ мпптмузя $\angle 6$				$\begin{gathered} \hline[0 \angle\llcorner\Sigma] \\ \mathbf{d} \mathbf{N} \\ \text { мпмㄴuav } \\ \text { E6 } \end{gathered}$	$\begin{gathered} \mathcal{E} 0 \cdot 8 \varepsilon z \\ \bigcap_{\text {wnavan }}^{\text {Z6 }} \\ \hline \end{gathered}$			$\begin{gathered} {[0 \bullet \angle z Z]} \\ \boldsymbol{\jmath V} \\ \text { waviuv } \\ 68 \end{gathered}$	Saionilov
	$\begin{gathered} \hline 00 \varepsilon L L \\ \mathbf{9 N} \\ \text { мпияания } \\ 0 L \end{gathered}$	$\begin{gathered} \hline \mathcal{E} 6891 \\ \mathbf{u}_{\mathbf{L}} \\ \text { маппи } \\ 69 \end{gathered}$		$\begin{gathered} \hline \text { E6't91 } \\ \mathbf{0 H} \\ \text { мантои } \\ \text { L9 } \end{gathered}$		$\begin{gathered} \hline \text { E6.8ऽI } \\ \text { qıL } \\ \text { wnara } \\ \text { §9 } \end{gathered}$	$\begin{gathered} \hline S Z C L S I \\ \mathbf{p 9} \\ \text { wannoavo } \\ \pm 9 \end{gathered}$					I6．0tI $\mathbf{I} \mathbf{I}$ wauxaosrrad 6 S			SaIONVHLNVT

										$\begin{gathered} \hline 0<Z] \\ \mathbf{~ S H} \\ \text { wassur } \\ 80[\end{gathered}$	$\begin{gathered} {[t \angle Z]} \\ \text { पя } \\ \text { мпнаная } \\ \angle 0 I \end{gathered}$		$\begin{gathered} {[897]} \\ \mathbf{q u a} \\ \text { wanama } \\ \text { ¢0I } \end{gathered}$		E0I－68	$\begin{gathered} {[0 \times 9 z z]} \\ \text { ey } \\ \text { whavad } \\ 88 \end{gathered}$	
［0｀zz\％］	［000IZ］	［0．017］	86．80Z	でLOZ	LE＇t0	6\％002	L696I	60． S 6 I	てでて6I	で06I	で98I	¢8＇E8I	¢6．08I	6t＊8LI			I6＇zEI
uy	1 V	Od	Ig	qd	IL	${ }_{\mathbf{8}}^{\mathbf{8}} \mathbf{H}$	nV	7 d	II	sO	Oy	M	$\mathbf{v}_{\mathbf{L}}$	JH		Eg	s 1
voara	anıvisv	wanvolod	нนกиงя	avz1	каттчни	кघпоуяк	поэ	wลงกบท1d	клйมี	мпиия	мапงзня	vaşsaı	wntwivi	wansvi		wпıva	wnıss
98	¢8	†8	E8	Z8	18	08	6 L	8L	LL	92	SL	七L	EL	ZL	IL－LS	95	SS
$0 \varepsilon^{*}$ I¢	06．92I	09 L ${ }^{\text {¢ }}$	ςL^{\prime}＇IZI	69．81I	28＇tII	0tて T I	L8． 201	†＇901	16＇201	L0＇101	［1686］	${ }^{\text {b6 ¢ }} 6$	I6＇Z6	てで16	16.88	29＊ 28	Lt＇ 58
$\boldsymbol{\partial X}$	I	OL	qS	uS	UI	pว	S\％	$\mathbf{p d}^{\text {d }}$	पУ	ny	${ }^{\mathbf{D}} \mathbf{L}$	0W	qN	dZ	\}	IS	9Y
vowax	зхйо	мงпйт73．	мхоиuм	Nu	wnaм	мапиаэ	ชалия	wnaverva	маноня	мамзния	мпนзงюз	шамваяхок	wй⿴囗⿻丷木大	маккоинz	манац	wnivours	млйиая
tS	ES	ZS	IS	OS	6t	8t	L \downarrow	9t	St	七t	$\varepsilon \downarrow$	てヵ	It	0t	6ε	8E	LE
08＇£8	06．6L	9681	て6＇t	6¢＇ZL	ZL＇69	6ど¢9	¢c＇£9	69．8s	E685	¢8．¢S		00＇zs	t60¢	88＇Lt	$96 . \downarrow t$	80．0t	01＇6E
JY	Jg	əS	SV	गD	$0 \cdot$	$\mathbf{u}_{\mathbf{Z}}$	n）	！${ }^{\text {d }}$	0〕	OH_{4}	UN	do	\}	IL	3S	b ${ }^{\text {d }}$	Y
vоихяу	зงмохя	wамхзzя	эnssav	พпางvхзз	матาข	งviz	ทзаоо	твулм	九тvas	vorn	зsanvovv	мапкони	wnavwn	wnıvim	wnavys	маวт	wanssiod
$9 \mathcal{1}$	SE	$\dagger \mathcal{L}$	EE	ZE	IE	0ε	67	87	LZ	97	¢て	七乙	$\varepsilon 乙$	Z2	IZ	02	6I
¢66E	St＇s¢	L0＇z\＆	L6．0¢	60：8z	86.92											เモ゙ャ	66.72
JV	I？	S	d	IS	IV											$\mathrm{S}^{\mathbf{o}} \mathbf{N}$	$\mathrm{B}_{\mathbf{N}}$
vosav	ахмиотบ	anams	Sпиопияоиd	vorrus	wankumiv											wansavve	wnaos
8I	LI	9I	¢ I	七I	εI											ZI	I I
$8{ }^{\circ} \mathrm{OL}$	00．61	00．91	I0＇tI	10＇zI	18．01											210\％ 6	It69
ON	H	0	N	ग	G											əg	！＇I
моя	зงхоот	งงงххо	мзวоним	voarv	моиоя											พпттามяя	ผงเนแา
0I	6	8	L	9	\bigcirc											†	ε
£00＇t																	$800 \cdot 1$
$\boldsymbol{\partial H}$																	H
кпптн																	моман
\checkmark																	I
8I	LI	9I	¢I	\dagger I	EI	ZI	II	0I	6	8	L	9	S	t	\mathcal{E}	Z	I

